The First High-Density Genetic Map Construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing
نویسندگان
چکیده
Genetic linkage maps, permitting the elucidation of genome structure, are one of most powerful genomic tools to accelerate marker-assisted breeding. However, due to a lack of sufficient user-friendly molecular markers, no genetic linkage map has been developed for tree peonies (Paeonia Sect. Moutan), a group of important horticultural plants worldwide. Specific-locus amplified fragment sequencing (SLAF-seq) is a recent molecular marker development technology that enable the large-scale discovery and genotyping of sequence-based marker in genome-wide. In this study, we performed SLAF sequencing of an F1 population, derived from the cross P. ostti 'FenDanBai' × P. × suffruticosa 'HongQiao', to identify sufficient high-quality markers for the construction of high-density genetic linkage map in tree peonies. After SLAF sequencing, a total of 78 Gb sequencing data and 285,403,225 pair-end reads were generated. We detected 309,198 high-quality SLAFs from these data, of which 85,124 (27.5%) were polymorphic. Subsequently, 3518 of the polymorphic markers, which were successfully encoded in to Mendelian segregation types, and were in conformity with the criteria of high-quality markers, were defined as effective markers and used for genetic linkage mapping. Finally, we constructed an integrated genetic map, which comprised 1189 markers on the five linkage groups, and spanned 920.699 centiMorgans (cM) with an average inter-marker distance of 0.774 cM. There were 1115 'SNP-only' markers, 18 'InDel-only' markers, and 56 'SNP&InDel' markers on the map. Among these markers, 450 (37.85%) showed significant segregation distortion (P < 0.05). In conclusion, this investigation reported the first large-scale marker development and high-density linkage map construction for tree peony. The results of this study will serve as a solid foundation not only for marker-assisted breeding, but also for genome sequence assembly for tree peony.
منابع مشابه
Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves
Diverse communities of bacteria inhabit plant tissues and those bacteria play a crucial role for plant health and growth. Tree peony (Paeonia Sect. Moutan) is known for its excellent ornamental and medicinal values as Chinese traditional plant, but little is known about its associated bacterial community under natural conditions. To examine how endophytic bacteria in tree peony vary across tiss...
متن کاملThe First Genetic Map in Sweet Osmanthus (Osmanthus fragrans Lour.) Using Specific Locus Amplified Fragment Sequencing
Osmanthus fragrans is an ornamental plant of substantial commercial value, and no genetic linkage maps of this species have previously been reported. Specific-locus amplified fragment sequencing (SLAF-seq) is a recently developed technology that allows massive single nucleotide polymorphisms (SNPs) to be identified and high-resolution genotyping. In our current research, we generated the first ...
متن کاملConstruction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq)
Genetic maps are particularly important and valuable tools for quantitative trait locus (QTL) mapping and marker assisted selection (MAS) of plant with desirable traits. In this study, 173 F1 plants from a cross between Mangifera indica L. "Jin-Hwang" and M. indica L. "Irwin" and their parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) librar...
متن کاملLarge-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq)
Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map containe...
متن کاملA high-density genetic map of cucumber derived from Specific Length Amplified Fragment sequencing (SLAF-seq)
High-density genetic map provides an essential framework for accurate and efficient genome assembly and QTL fine mapping. Construction of high-density genetic maps appears more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput genotyping of large population. In this research, a high-density genetic map of cucumber (Cucumis sativus L.) w...
متن کامل